Remove unused files from midi2cv, implement some polyphony related

things
This commit is contained in:
Jan-Henrik 2020-04-18 00:23:23 +02:00
parent 73bf23d79e
commit 210f5e1c77
10 changed files with 192 additions and 232935 deletions

View file

@ -1,657 +0,0 @@
#include <MIDI.h>
#include <SPI.h>
#include <DAC57X4.h>
#include <EEPROM.h>
#include <usbh_midi.h>
#include <usbhub.h>
#include <midi_RingBuffer.h>
#define MIDI_CHANNEL 1
#define OCTAVE_RANGE 10
#define MAX_CV 10.0
#define NOTES_PER_OCTAVE 12
#define CV_PER_OCTAVE 1.0
#define CV_PER_NOTE CV_PER_OCTAVE / NOTES_PER_OCTAVE
#define BASE_NOTE 21
#define MAX_NOTE 108
#define NOTE_RANGE OCTAVE_RANGE * NOTES_PER_OCTAVE
// Define Pitch Bend range to be a major second
#define BEND_RANGE ((CV_PER_NOTE) * 1)
#define PIN_USB_RESET 7
#define PIN_GATE_0 A5
#define PIN_GATE_1 A1
#define PIN_GATE_2 A2
#define PIN_GATE_3 A3
#define ROTARY_SWITCH_PIN0 2
#define ROTARY_SWITCH_PIN1 3
#define ROTARY_SWITCH_PIN2 4
#define PIN_SPEED A4
#define PIN_FLIP_SWITCH_0 A6
#define PIN_FLIP_SWITCH_1 A7
#define FLIP_SWITCH_UP 0
#define FLIP_SWITCH_MIDDLE 1
#define FLIP_SWITCH_DOWN 2
#define MODE_MONO 0
#define MODE_ARP 1
#define MODE_SEQ 2
#define MIDI_CLOCK_THRESHOLD_MILLIS 500
#define MIDI_CLOCK_DIVIDE_QUARTER 24
#define MIDI_CLOCK_DIVIDE_HALF MIDI_CLOCK_DIVIDE_QUARTER * 2
#define MIDI_CLOCK_DIVIDE_WHOLE MIDI_CLOCK_DIVIDE_HALF * 2
#define MIDI_CLOCK_DIVIDE_EIGTH MIDI_CLOCK_DIVIDE_QUARTER / 2
#define MIDI_CLOCK_DIVIDE_EIGHT_T MIDI_CLOCK_DIVIDE_QUARTER / 3
#define MIDI_CLOCK_DIVIDE_SIXTEENTH MIDI_CLOCK_DIVIDE_EIGTH / 2
#define MIDI_CLOCK_DIVIDE_SIXTEENTH_T MIDI_CLOCK_DIVIDE_EIGTH / 3
#define MIDI_CLOCK_DIVIDE_THIRTY_SECOND MIDI_CLOCK_DIVIDE_SIXTEENTH / 2
#define MIDI_CLOCK_DIVIDE_THIRTY_SECOND_T MIDI_CLOCK_DIVIDE_SIXTEENTH / 3
#define MIDI_CLOCK_DIVISION_COUNT 9
const int clockDivisions[] = { MIDI_CLOCK_DIVIDE_WHOLE, MIDI_CLOCK_DIVIDE_HALF,
MIDI_CLOCK_DIVIDE_QUARTER,
MIDI_CLOCK_DIVIDE_EIGTH, MIDI_CLOCK_DIVIDE_EIGHT_T,
MIDI_CLOCK_DIVIDE_SIXTEENTH, MIDI_CLOCK_DIVIDE_SIXTEENTH_T,
MIDI_CLOCK_DIVIDE_THIRTY_SECOND, MIDI_CLOCK_DIVIDE_THIRTY_SECOND_T
};
#define MANUAL_CLOCK_MIN 20
#define MANUAL_CLOCK_MAX 2000
#define SEQUENCE_COUNT 6
#define SEQUENCE_LENGTH_MAX 128
#define ARP_DIRECTION_UP 0
#define ARP_DIRECTION_DOWN 1
#define ARP_DIRECTION_BOTH 2
#define ARP_DIRECTION_ORDER 3
#define ARP_DIRECTION_RANDOM 4
#define ARP_DIRECTION_NONE 5
#define ARP_MODE_LATCH FLIP_SWITCH_UP
#define ARP_MODE_FORGET FLIP_SWITCH_MIDDLE
#define ARP_MODE_ADD FLIP_SWITCH_DOWN
DAC57X4 dac(4, 2, SS);
class USBMidiParser
{
public:
USBMidiParser(USBH_MIDI *usbThing);
int available();
void begin(unsigned baud);
byte read();
void write(unsigned char data);
private:
midi::RingBuffer<byte, 64> rxBuffer;
USBH_MIDI *usb;
};
USBMidiParser::USBMidiParser(USBH_MIDI *usbThing) {
usb = usbThing;
}
int USBMidiParser::available() {
uint8_t buf[20];
byte length = 0;
if((length = usb->RecvData(buf)) > 0) {
for(byte i = 0; i < length; i++)
rxBuffer.write(buf[i]);
}
return rxBuffer.getLength();
}
void USBMidiParser::begin(unsigned baud) {
rxBuffer.clear();
}
byte USBMidiParser::read() {
return rxBuffer.read();
}
void USBMidiParser::write(unsigned char asd) {}
USB Usb;
USBH_MIDI usbMidi(&Usb);
USBMidiParser parser(&usbMidi);
boolean usbMidiEnabled = false;
MIDI_CREATE_DEFAULT_INSTANCE();
MIDI_CREATE_INSTANCE(USBMidiParser, parser, MIDIUSB);
byte currentMode = MODE_MONO;
byte flipSwitch0 = FLIP_SWITCH_UP;
byte flipSwitch1 = FLIP_SWITCH_UP;
byte rotarySwitch = 0;
int speedValue = 0;
float cv[] = {0, 0, 0, 0}; // 0 to MAX_CV
bool gate[] = {LOW, LOW, LOW, LOW}; // LOW or HIGH
bool midiStartSignal = LOW;
bool midiClockSignal = LOW;
byte activeNotes[NOTE_RANGE];
byte noteCount = 1;
byte activeNoteCount = 0;
int currentPitchBend = 0;
byte currentModulation = 0;
byte currentVelocity = 0;
bool trigger = false;
bool released = false;
byte lastChannel = 0;
int clockCounter = 0;
unsigned long lastClockMillis = 0;
byte currentClockDivide = 0;
byte nextClockDivide = 0;
unsigned long lastManualClockMillis = 0;
byte currentSequencePosition = 0;
byte currentArpPosition = 0;
byte activeArpNotes[NOTE_RANGE];
byte activeArpNoteCount = 0;
bool arpLatchReadyForNew = true;
void setup() {
pinMode(PIN_GATE_0, OUTPUT);
pinMode(PIN_GATE_1, OUTPUT);
pinMode(PIN_GATE_2, OUTPUT);
pinMode(PIN_GATE_3, OUTPUT);
MIDI.begin(MIDI_CHANNEL_OMNI);
MIDI.setHandleClock(onMidiClock);
MIDI.setHandleNoteOn(onMidiNoteOn);
MIDI.setHandleNoteOff(onMidiNoteOff);
MIDI.setHandleStart(onMidiStart);
MIDI.setHandleControlChange(onMidiControlChange);
MIDI.setHandlePitchBend(onMidiPitchBend);
if(Usb.Init() == -1) {
usbMidiEnabled = false;
} else {
usbMidiEnabled = true;
MIDIUSB.begin(MIDI_CHANNEL_OMNI);
MIDIUSB.setHandleClock(onMidiClock);
MIDIUSB.setHandleNoteOn(onMidiNoteOn);
MIDIUSB.setHandleNoteOff(onMidiNoteOff);
MIDIUSB.setHandleStart(onMidiStart);
MIDIUSB.setHandleControlChange(onMidiControlChange);
MIDIUSB.setHandlePitchBend(onMidiPitchBend);
}
}
void onMidiClock() {
if(clockCounter == 0) {
midiClockSignal = HIGH;
}
clockCounter++;
if(clockCounter == clockDivisions[currentClockDivide]) {
clockCounter = 0;
currentClockDivide = nextClockDivide;
}
lastClockMillis = millis();
}
void onMidiNoteOn(byte channel, byte note, byte velocity) {
if(channel > MIDI_CHANNEL + 1) return;
if(note < BASE_NOTE || note > MAX_NOTE) return;
lastChannel = channel;
if(velocity == 0) { onMidiNoteOff(channel, note, velocity); return; }
activeNotes[note - BASE_NOTE] = noteCount++;
activeNoteCount++;
currentVelocity = velocity;
trigger = true;
}
void onMidiNoteOff(byte channel, byte note, byte velocity) {
if(channel > MIDI_CHANNEL + 1) return;
activeNotes[note - BASE_NOTE] = 0;
activeNoteCount--;
if(activeNoteCount == 0) {
currentVelocity = 0;
noteCount = 1;
}
released = 0;
}
void onMidiControlChange(byte channel, byte number, byte value) {
if(channel > MIDI_CHANNEL + 1) return;
currentModulation = value;
}
void onMidiPitchBend(byte channel, int bend) {
if(channel > MIDI_CHANNEL + 1) return;
currentPitchBend = bend;
}
void onMidiStart() {
midiStartSignal = HIGH;
clockCounter = 0;
currentClockDivide = nextClockDivide;
}
float midiToCV(byte note) {
if(note < BASE_NOTE) return 0;
if(note - BASE_NOTE > NOTE_RANGE) return MAX_CV;
return (note - BASE_NOTE) * CV_PER_NOTE;
}
byte getMostRecentNote() {
byte note;
unsigned long maxTime = 0;
for(byte i = 0; i < NOTE_RANGE; i++) {
if(activeNotes[i] != 0 && activeNotes[i] >= maxTime) {
note = i;
maxTime = activeNotes[i];
}
}
return note;
}
void loop() {
readSwitches();
if(flipSwitch0 == FLIP_SWITCH_UP) currentMode = MODE_MONO;
else if(flipSwitch0 == FLIP_SWITCH_MIDDLE) currentMode = MODE_SEQ;
else if(flipSwitch0 == FLIP_SWITCH_DOWN) currentMode = MODE_ARP;
readSpeed();
MIDI.read();
if(usbMidiEnabled) {
Usb.Task();
if(usbMidi)
MIDIUSB.read();
}
if(millis() - lastClockMillis > MIDI_CLOCK_THRESHOLD_MILLIS) {
// Apparently we are not getting any midi clocks, so we will just generate our own signal.
long waitTime = map(speedValue, 0, 1023, (60000) / MANUAL_CLOCK_MIN, (60000) / MANUAL_CLOCK_MAX);
if(millis() - lastManualClockMillis > waitTime) {
// Time for another clock signal!
lastManualClockMillis = millis();
midiClockSignal = HIGH;
}
} else {
nextClockDivide = map(speedValue, 0, 1023, 0, MIDI_CLOCK_DIVISION_COUNT);
}
bool triggerOut = false;
switch(currentMode) {
case MODE_MONO:
if(activeNoteCount > 0) {
// Find most recent hit key
byte note = getMostRecentNote();
float value = midiToCV(note + BASE_NOTE);
cv[0] = value + mapfloat(currentPitchBend, 0, MIDI_PITCHBEND_MAX, -BEND_RANGE, BEND_RANGE);
cv[1] = mapfloat(currentVelocity, 0, 127, 0, MAX_CV);
cv[2] = mapfloat(currentModulation, 0, 127, 0, MAX_CV);
triggerOut = trigger;
if(lastChannel == MIDI_CHANNEL + 1 && trigger) { // IF on second channel, we retrigger the gate.
gate[0] = LOW;
} else {
gate[0] = HIGH;
}
} else {
gate[0] = LOW;
}
break;
case MODE_SEQ:
if(flipSwitch1 == FLIP_SWITCH_UP) {
// Rec mode.
if(activeNoteCount > 0) {
// Find most recent hit key
byte note = getMostRecentNote();
float value = midiToCV(note + BASE_NOTE);
cv[0] = value + mapfloat(currentPitchBend, 0, MIDI_PITCHBEND_MAX, -BEND_RANGE, BEND_RANGE);
gate[0] = HIGH;
if(trigger) {
triggerOut = true;
EEPROM.update(rotarySwitch, EEPROM[rotarySwitch] + 1);
byte notePosition = EEPROM[rotarySwitch] - 1;
EEPROM.update(SEQUENCE_COUNT + rotarySwitch * SEQUENCE_LENGTH_MAX + notePosition, note);
}
} else {
gate[0] = LOW;
triggerOut = false;
}
} else if(flipSwitch1 == FLIP_SWITCH_MIDDLE) {
// Play Mode
if(activeNoteCount > 0 && EEPROM[rotarySwitch] > 0) {
byte note = getMostRecentNote();
byte currentSequenceValue = EEPROM[SEQUENCE_COUNT + rotarySwitch * SEQUENCE_LENGTH_MAX + currentSequencePosition];
note = currentSequenceValue + note - EEPROM[SEQUENCE_COUNT + rotarySwitch * SEQUENCE_LENGTH_MAX + 0];
if(trigger && millis() - lastClockMillis > MIDI_CLOCK_THRESHOLD_MILLIS) {
// no midi input but a key was pressed, so we start the sequence now instead of at next clock signal
midiClockSignal = HIGH;
lastManualClockMillis = millis();
}
if(midiClockSignal) { // trigger a new note!
triggerOut = true;
float value = midiToCV(note + BASE_NOTE);
cv[0] = value + mapfloat(currentPitchBend, 0, MIDI_PITCHBEND_MAX, -BEND_RANGE, BEND_RANGE);
currentSequencePosition = (currentSequencePosition + 1) % EEPROM[rotarySwitch];
}
gate[0] = HIGH;
} else {
gate[0] = LOW;
currentSequencePosition = 0;
}
} else if(flipSwitch1 == FLIP_SWITCH_DOWN) {
// clear on note
if(activeNoteCount > 0 && trigger) {
EEPROM.update(rotarySwitch, 0);
}
}
break;
case MODE_ARP:
if(flipSwitch1 == ARP_MODE_LATCH) {
// ARP Mode LATCH
if(trigger) {
if(activeNoteCount == 1) {
// first note of the new arpeggio pressed
currentArpPosition = 0;
activeArpNoteCount = 1;
for(int i = 0; i < NOTE_RANGE; i++) {
if(activeNotes[i] != 0) currentArpPosition = i; // This is the first note of our arpeggio, so set it to this
activeArpNotes[i] = activeNotes[i];
}
} else {
// new note for current arpeggio
for(int i = 0; i < NOTE_RANGE; i++) {
if(activeNotes[i] != 0 && activeArpNotes[i] == 0) activeArpNoteCount++;
if(activeNotes[i] != 0) // We don't want to disable any notes, only activate new ones
activeArpNotes[i] = activeNotes[i];
}
}
}
} else if(flipSwitch1 == ARP_MODE_FORGET) {
// activeArpNotes is equivalent to activeNotes. ezpz
for(int i = 0; i < NOTE_RANGE; i++) {
activeArpNotes[i] = activeNotes[i];
}
activeArpNoteCount = activeNoteCount;
if(released && activeNoteCount == 0) {
currentArpPosition = 0;
}
} else if(flipSwitch1 == ARP_MODE_ADD) {
// we just add any active Note until some mysterious signal tells us to reset (modulation > 63!)
if(currentModulation < 64) {
byte active = 0;
for(int i = 0; i < NOTE_RANGE; i++) {
if(activeNotes[i] > 0) {
activeArpNotes[i] = activeNotes[i];
}
if(activeArpNotes[i] != 0)
active++;
}
activeArpNoteCount = active;
} else {
activeArpNoteCount = 0;
for(int i = 0; i < NOTE_RANGE; i++)
activeArpNotes[i] = 0;
}
}
if(activeArpNoteCount > 0) {
if( activeArpNotes[currentArpPosition] == 0) {
// find the first note in the arp.
switch(rotarySwitch) {
case ARP_DIRECTION_UP:
case ARP_DIRECTION_BOTH:
for(int i = 0; i < NOTE_RANGE; i++)
if(activeArpNotes[i] != 0) {
currentArpPosition = i;
break;
}
break;
case ARP_DIRECTION_DOWN:
for(int i = NOTE_RANGE - 1; i >= 0; i--)
if(activeArpNotes[i] != 0) {
currentArpPosition = i;
break;
}
break;
case ARP_DIRECTION_RANDOM:
byte newIndex = 0;
do {
newIndex = random(0, 255);
} while(activeArpNotes[newIndex] == 0 || currentArpPosition == newIndex);
currentArpPosition = newIndex;
break;
case ARP_DIRECTION_ORDER:
byte minValue = 0;
byte minValueIndex = 0;
for(int i = 0; i < NOTE_RANGE; i++) {
if(i == currentArpPosition || activeArpNotes[i] == 0) continue;
if(activeArpNotes[i] < minValue) {
minValue = activeArpNotes[i];
minValueIndex = i;
}
}
currentArpPosition = minValueIndex;
break;
}
}
byte note = currentArpPosition; // This is the current Arp Note to play
if(midiClockSignal) { // trigger a new note!
triggerOut = true;
float value = midiToCV(note + BASE_NOTE);
cv[0] = value + mapfloat(currentPitchBend, 0, MIDI_PITCHBEND_MAX, -BEND_RANGE, BEND_RANGE);
// now we have to find the next arp position. this depends on the current mode.
bool foundNote = false;
switch(rotarySwitch) {
case ARP_DIRECTION_UP:
if(activeArpNoteCount == 1) break;
// We just go up and if we reach the last note in the arp, we go back to the first one
for(int i = currentArpPosition + 1; i < NOTE_RANGE; i++) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
foundNote = true;
break;
}
}
if(!foundNote) {
// We have to find the first note at the beginning of the arpeggio now...
for(int i = 0; i < NOTE_RANGE; i++) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
break;
}
}
}
break;
case ARP_DIRECTION_DOWN:
if(activeArpNoteCount == 1) break;
// We just go down and if we reach the first note in the arp, we go forward to the last one
for(int i = currentArpPosition - 1; i >= 0; i--) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
foundNote = true;
break;
}
}
if(!foundNote) {
// We have to find the last note at the beginning of the arpeggio now...
for(int i = NOTE_RANGE - 1; i >= 0; i--) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
break;
}
}
}
break;
case ARP_DIRECTION_BOTH:
if(activeArpNoteCount == 1) break;
// We just go up and if we reach the last note in the arp, we go back one note
for(int i = currentArpPosition + 1; i < NOTE_RANGE; i++) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
foundNote = true;
break;
}
}
// we are going downwards, so let's search!
if(!foundNote) {
for(int i = currentArpPosition - 1; i >= 0; i--) {
if(activeArpNotes[i] != 0) {
// found the next note!
currentArpPosition = i;
foundNote = true;
break;
}
}
}
break;
case ARP_DIRECTION_ORDER:
if(activeArpNoteCount == 1) break;
// We find the note that has the least distance to the current notes value.
// If we can't find one, we assign the note with the lowest value
byte minValue = 255;
byte minValueIndex = 0;
for(int i = 0; i < NOTE_RANGE; i++) {
if(i == currentArpPosition || activeArpNotes[i] == 0) continue;
byte distance = abs(activeArpNotes[i] - activeArpNotes[currentArpPosition]);
if(distance < minValue) {
minValue = distance;
minValueIndex = i;
}
}
if(minValue == 255) { // We did not find a higher note, so let's go back to the first one.
minValue = 0;
for(int i = 0; i < NOTE_RANGE; i++) {
if(i == currentArpPosition || activeArpNotes[i] == 0) continue;
if(activeArpNotes[i] < minValue) {
minValue = activeArpNotes[i];
minValueIndex = i;
}
}
}
currentArpPosition = minValueIndex;
break;
case ARP_DIRECTION_RANDOM:
byte newIndex = 0;
do {
newIndex = random(0, 255);
} while(activeArpNotes[newIndex] == 0 || currentArpPosition == newIndex);
currentArpPosition = newIndex;
break;
case ARP_DIRECTION_NONE:
// Noone knows what happens here.
break;
}
}
gate[0] = HIGH;
} else {
gate[0] = LOW;
currentArpPosition = 0;
}
break;
}
gate[1] = triggerOut ? HIGH : LOW;
gate[2] = midiStartSignal;
gate[3] = midiClockSignal;
trigger = false;
released = false;
midiStartSignal = LOW;
midiClockSignal = LOW;
writeDACs();
writeGates();
}
float mapfloat(float x, float in_min, float in_max, float out_min, float out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void readSwitches() {
int analogValue = analogRead(PIN_FLIP_SWITCH_0);
if(analogValue < 100) flipSwitch0 = FLIP_SWITCH_UP;
else if(analogValue < 900) flipSwitch0 = FLIP_SWITCH_DOWN;
else flipSwitch0 = FLIP_SWITCH_MIDDLE;
analogValue = analogRead(PIN_FLIP_SWITCH_1);
if(analogValue < 100) flipSwitch1 = FLIP_SWITCH_UP;
else if(analogValue < 900) flipSwitch1 = FLIP_SWITCH_DOWN;
else flipSwitch1 = FLIP_SWITCH_MIDDLE;
rotarySwitch = (!digitalRead(ROTARY_SWITCH_PIN0) << 2) & (!digitalRead(ROTARY_SWITCH_PIN1) << 1) & !digitalRead(ROTARY_SWITCH_PIN2);
}
void readSpeed() {
speedValue = analogRead(PIN_SPEED);
}
void writeDACs() {
dac.SetDAC(cv[0], 1);
dac.SetDAC(cv[1], 2);
dac.SetDAC(cv[2], 3);
dac.SetDAC(cv[3], 4);
}
void writeGates() {
digitalWrite(PIN_GATE_0, gate[0] == HIGH ? LOW : HIGH);
digitalWrite(PIN_GATE_1, gate[1] == HIGH ? LOW : HIGH);
digitalWrite(PIN_GATE_2, gate[2] == HIGH ? LOW : HIGH);
digitalWrite(PIN_GATE_3, gate[3] == HIGH ? LOW : HIGH);
}

View file

@ -30,6 +30,7 @@ FAMILY = f3xx
MEMORY_MODE = flash MEMORY_MODE = flash
U8G2 = enabled U8G2 = enabled
# USB = enabled # USB = enabled
OPTIMIZE = TRUE
# Preferred upload command # Preferred upload command
UPLOAD_COMMAND = upload_jtag UPLOAD_COMMAND = upload_jtag

View file

@ -0,0 +1,77 @@
#include "part.h"
bool Part::is_message_handled(uint8_t channel, uint8_t note) // TODO: add origin
{
if (this->part_data().midi_filter_channel_enabled && channel != this->part_data().midi_filter_channel)
return false;
if (this->part_data().midi_filter_lowest_note > note || this->part_data().midi_filter_highest_note < note)
return false;
return true;
}
bool Part::NoteOn(uint8_t channel, uint8_t note, uint8_t velocity)
{
if (!is_message_handled(channel, note))
return false;
if (velocity == 0)
return NoteOff(channel, note, velocity);
uint8_t voiceIndex = 0;
if (this->part_data().part_voice_count > 1) { // only use voiceallocator for polyphonic config
voiceIndex = voiceAllocator.NoteOn(note);
}
Voice* voice = &voices[voiceIndex];
voice->NoteOn(note, velocity);
return true;
}
bool Part::NoteOff(uint8_t channel, uint8_t note, uint8_t velocity)
{
if (!is_message_handled(channel, note))
return false;
uint8_t voiceIndex = 0;
if (this->part_data().part_voice_count > 1) { // only use voiceallocator for polyphonic config
voiceIndex = voiceAllocator.NoteOff(note);
}
Voice* voice = &voices[voiceIndex];
voice->NoteOff(note, velocity);
return true;
}
bool Part::PitchBend(uint8_t channel, uint16_t pitch_bend)
{
if (!is_message_handled(channel, this->part_data().midi_filter_lowest_note))
return false;
for (size_t i = 0; i < this->part_data().part_voice_count; i++)
voices[i].PitchBend(pitch_bend);
return true;
}
bool Part::Aftertouch(uint8_t channel, uint8_t note, uint8_t velocity) {
if(!is_message_handled(channel, note)) return false;
uint8_t voiceIndex = 0;
if(this->part_data().part_voice_count > 1)
voiceIndex = this->voiceAllocator.Find(note);
voices[voiceIndex].Aftertouch(velocity);
return true;
}
bool Part::Aftertouch(uint8_t channel, uint8_t velocity) {
if(!is_message_handled(channel, this->part_data().midi_filter_lowest_note)) return false;
for(size_t i = 0; i < this->part_data().part_voice_count; i++)
voices[i].Aftertouch(velocity);
return true;
}

View file

@ -1,7 +1,12 @@
#ifndef MIDI2CV_PART_H #pragma once
#define MIDI2CV_PART_H
#include <inttypes.h> #include "stmlib/algorithms/voice_allocator.h"
#include "stmlib/stmlib.h"
#include "voice.h"
using namespace stmlib;
const int kMaximumPolyphony = 4;
#define TOTAL_COLUMN_COUNT 4 #define TOTAL_COLUMN_COUNT 4
@ -80,13 +85,26 @@ class Part {
data.output_type_row_3[i] = GATE_OFF;*/ data.output_type_row_3[i] = GATE_OFF;*/
} }
} }
void ProcessMidiInput(/* TODO: Inputs */);
uint8_t RequiredColumns(); bool NoteOn(uint8_t channel, uint8_t note, uint8_t velocity);
bool NoteOff(uint8_t channel, uint8_t note, uint8_t velocity);
bool Aftertouch(uint8_t channel, uint8_t note, uint8_t velocity);
bool Aftertouch(uint8_t channel, uint8_t velocity);
bool ControlChange(uint8_t channel, uint8_t controller, uint8_t value);
bool ProgramChange(uint8_t channel, uint8_t program);
bool PitchBend(uint8_t channel, uint16_t pitch_bend);
uint8_t required_columns();
inline PartData* mutable_part_data() { return &data; }
inline PartData part_data() { return data; }
void Refresh(); // called whenever the settings change (for example voice count etc)
private:
bool is_message_handled(uint8_t channel, uint8_t note); // TODO: add origin
PartData data; PartData data;
VoiceAllocator<kMaximumPolyphony> voiceAllocator;
Voice voices[kMaximumPolyphony];
}; };
extern Part parts[]; extern Part parts[];
#endif

File diff suppressed because it is too large Load diff

View file

@ -64,13 +64,13 @@ void UI::Draw()
void UI::LoadState() void UI::LoadState()
{ {
for (size_t i = 0; i < PART_COUNT; i++) for (size_t i = 0; i < PART_COUNT; i++)
this->parts[i]->data = settings->part(i); *this->parts[i]->mutable_part_data() = settings->part(i);
} }
void UI::SaveState() void UI::SaveState()
{ {
for (size_t i = 0; i < PART_COUNT; i++) { for (size_t i = 0; i < PART_COUNT; i++) {
*(settings->mutable_part(i)) = this->parts[i]->data; *(settings->mutable_part(i)) = this->parts[i]->part_data();
} }
settings->SaveState(); settings->SaveState();

View file

@ -12,22 +12,22 @@ static const char* kMidiThruStrings[] = { "off", "on", "polychain" };
PartMenu::PartMenu(Part* _part) PartMenu::PartMenu(Part* _part)
: part(_part) : part(_part)
, item_voice_count("voice count", (uint8_t*)&_part->data.part_voice_count, 1, 4, 1) , item_voice_count("voice count", (uint8_t*)&_part->mutable_part_data()->part_voice_count, 1, 4, 1)
, item_voice_detail("voice detail", (uint8_t*)&_part->data.part_voice_detail, kVoiceDetailStrings, 4) , item_voice_detail("voice detail", (uint8_t*)&_part->mutable_part_data()->part_voice_detail, kVoiceDetailStrings, 4)
, item_midi_filter_enabled("MIDI filter", &_part->data.midi_filter_channel_enabled, "on", "off") , item_midi_filter_enabled("MIDI filter", &_part->mutable_part_data()->midi_filter_channel_enabled, "on", "off")
, item_midi_channel("MIDI channel", (uint8_t*)&_part->data.midi_filter_channel, kMidiChannelStrings, 17, [_part] { , item_midi_channel("MIDI channel", (uint8_t*)&_part->mutable_part_data()->midi_filter_channel, kMidiChannelStrings, 17, [_part] {
return _part->data.midi_filter_channel_enabled; return _part->part_data().midi_filter_channel_enabled;
}) })
, item_midi_input("MIDI input", (uint8_t*)&_part->data.midi_filter_input, kMidiInputStrings, 3, [_part] { , item_midi_input("MIDI input", (uint8_t*)&_part->mutable_part_data()->midi_filter_input, kMidiInputStrings, 3, [_part] {
return _part->data.midi_filter_channel_enabled; return _part->part_data().midi_filter_channel_enabled;
}) })
, item_midi_lowest_note("MIDI lowest", (uint8_t*)&_part->data.midi_filter_lowest_note, [_part] { , item_midi_lowest_note("MIDI lowest", (uint8_t*)&_part->mutable_part_data()->midi_filter_lowest_note, [_part] {
return _part->data.midi_filter_channel_enabled; return _part->part_data().midi_filter_channel_enabled;
}) })
, item_midi_highest_note("MIDI highest", (uint8_t*)&_part->data.midi_filter_highest_note, [_part] { , item_midi_highest_note("MIDI highest", (uint8_t*)&_part->mutable_part_data()->midi_filter_highest_note, [_part] {
return _part->data.midi_filter_channel_enabled; return _part->part_data().midi_filter_channel_enabled;
}) })
, item_midi_thru_mode("MIDI thru", (uint8_t*)&_part->data.midi_thru_mode, kMidiThruStrings, 3) , item_midi_thru_mode("MIDI thru", (uint8_t*)&_part->mutable_part_data()->midi_thru_mode, kMidiThruStrings, 3)
{ {
this->menu.add_item(&this->item_voice_count); this->menu.add_item(&this->item_voice_count);
this->menu.add_item(&this->item_voice_detail); this->menu.add_item(&this->item_voice_detail);

43
midi2cv/voice.cc Normal file
View file

@ -0,0 +1,43 @@
#include "voice.h"
#include "stmlib/algorithms/note_stack.h"
using namespace stmlib;
void Voice::NoteOn(uint8_t note, uint8_t velocity)
{
this->noteStack.NoteOn(note, velocity);
}
void Voice::NoteOff(uint8_t note, uint8_t velocity)
{
this->noteStack.NoteOff(note);
}
void Voice::PitchBend(uint16_t pitch_bend)
{
this->pitchBend = pitch_bend;
}
float Voice::PitchOutputSemitones()
{
if (this->noteStack.size() == 0)
return 0;
NoteEntry note = this->noteStack.note_by_priority(NOTE_STACK_PRIORITY_LAST);
// insanely temporary stuff ahead
// ULTRA NAIVE pitch to cv assuming max value is 10V
float semitones = note.note;
float pitch_bend = (this->pitchBend - 32768.0) / 65536.0 * 2.0; // -1 to 1
semitones += pitch_bend * 1.5f; // pitch bend range: 1.5 semitones
return semitones;
};
void Voice::Reset()
{
this->noteStack.Clear();
}

31
midi2cv/voice.h Normal file
View file

@ -0,0 +1,31 @@
#pragma once
#include "stmlib/algorithms/note_stack.h"
const int kMaximumNoteStackSize = 16;
using namespace stmlib;
class Voice {
public:
Voice()
{
noteStack.Init();
}
void NoteOn(uint8_t note, uint8_t velocity);
void NoteOff(uint8_t note, uint8_t velocity);
void Aftertouch(uint8_t velocity);
void ControlChange(uint8_t controller, uint8_t value);
void ProgramChange(uint8_t program);
void PitchBend(uint16_t pitch_bend);
void Reset();
float PitchOutputSemitones(); //
private:
NoteStack<kMaximumNoteStackSize> noteStack;
uint16_t pitchBend;
};

2
stmlib

@ -1 +1 @@
Subproject commit 688459c60596d95d4973b3d1e85b92c45000d79a Subproject commit 66684b7f071f6cdd141a24f71a39a3fff41bafa0