Create Part class, think about output assignments

This commit is contained in:
Jan-Henrik 2019-10-06 12:55:04 +02:00
parent 59424f01bb
commit 88916400d2
3 changed files with 109 additions and 93 deletions

View file

@ -2,9 +2,9 @@
#include "drivers/display.h"
#include "drivers/gpio.h"
#include "part.h"
#include "stmlib/system/system_clock.h"
#include "ui.h"
#include "part.h"
using namespace stmlib;
@ -12,29 +12,30 @@ GPIO gpio;
Display display;
UI ui;
//SystemClock system_clock;
Part part[4];
// Default interrupt handlers.
extern "C" {
void NMI_Handler() {}
void HardFault_Handler()
{
while (1)
;
while (1)
;
}
void MemManage_Handler()
{
while (1)
;
while (1)
;
}
void BusFault_Handler()
{
while (1)
;
while (1)
;
}
void UsageFault_Handler()
{
while (1)
;
while (1)
;
}
void SVC_Handler() {}
void DebugMon_Handler() {}
@ -43,87 +44,87 @@ void PendSV_Handler() {}
// called every 1ms
void SysTick_Handler()
{
IWDG_ReloadCounter();
system_clock.Tick();
IWDG_ReloadCounter();
system_clock.Tick();
}
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) == RESET) {
return;
}
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
if (TIM_GetITStatus(TIM2, TIM_IT_Update) == RESET) {
return;
}
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
// this will get called with 192 kHz (foof)
// we want to reduce the amount of times the ui gets polled to 1kHz
// which still is a lot (60fps would be enough tbh)
// this will get called with 192 kHz (foof)
// we want to reduce the amount of times the ui gets polled to 1kHz
// which still is a lot (60fps would be enough tbh)
static uint8_t count = 0;
count++;
if (count % 192 == 0) {
ui.Flush();
count = 0;
}
static uint8_t count = 0;
count++;
if (count % 192 == 0) {
ui.Flush();
count = 0;
}
if (count % 48 == 0) { // write audiodac1
}
if (count % 48 == 1) { // write audiodac2
}
if (count % 48 == 2) { // write audiodac3
}
if (count % 48 == 3) { // write audiodac4
}
if (count % 48 == 0) { // write audiodac1
}
if (count % 48 == 1) { // write audiodac2
}
if (count % 48 == 2) { // write audiodac3
}
if (count % 48 == 3) { // write audiodac4
}
}
}
void InitTimers(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseInitTypeDef timer_init;
timer_init.TIM_Period = F_CPU / (48000 * 4) - 1; // 192 kHz, 48kHz for each audio DAC
timer_init.TIM_Prescaler = 0;
timer_init.TIM_ClockDivision = TIM_CKD_DIV1;
timer_init.TIM_CounterMode = TIM_CounterMode_Up;
timer_init.TIM_RepetitionCounter = 0;
//TIM_InternalClockConfig(TIM2);
TIM_TimeBaseInit(TIM2, &timer_init);
TIM_Cmd(TIM2, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseInitTypeDef timer_init;
timer_init.TIM_Period = F_CPU / (48000 * 4) - 1; // 192 kHz, 48kHz for each audio DAC
timer_init.TIM_Prescaler = 0;
timer_init.TIM_ClockDivision = TIM_CKD_DIV1;
timer_init.TIM_CounterMode = TIM_CounterMode_Up;
timer_init.TIM_RepetitionCounter = 0;
//TIM_InternalClockConfig(TIM2);
TIM_TimeBaseInit(TIM2, &timer_init);
TIM_Cmd(TIM2, ENABLE);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 2.2 priority split.
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 2.2 priority split.
// DAC interrupt is given highest priority
NVIC_InitTypeDef timer_interrupt;
timer_interrupt.NVIC_IRQChannel = TIM2_IRQn;
timer_interrupt.NVIC_IRQChannelPreemptionPriority = 0;
timer_interrupt.NVIC_IRQChannelSubPriority = 1;
timer_interrupt.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&timer_interrupt);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
// DAC interrupt is given highest priority
NVIC_InitTypeDef timer_interrupt;
timer_interrupt.NVIC_IRQChannel = TIM2_IRQn;
timer_interrupt.NVIC_IRQChannelPreemptionPriority = 0;
timer_interrupt.NVIC_IRQChannelSubPriority = 1;
timer_interrupt.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&timer_interrupt);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
}
void Init(void)
{
//SystemInit();
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x8000);
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_16);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
SystemInit();
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x8000);
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_16);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
system_clock.Init();
SysTick_Config(F_CPU / 8000);
IWDG_Enable();
gpio.Init();
// asm("bkpt #0");
display.Init();
InitTimers();
system_clock.Init();
SysTick_Config(F_CPU / 8000);
IWDG_Enable();
gpio.Init();
// asm("bkpt #0");
display.Init();
InitTimers();
}
int main(void)
{
Init();
while (1) {
// In this loop we do things that dont depend on any timing, but that have to be done.
// you should not write on spi here because that should happen in the TIM2 interrupt
ui.Update();
}
Init();
while (1) {
// In this loop we do things that dont depend on any timing, but that have to be done.
// you should not write on spi here because that should happen in the TIM2 interrupt
ui.Update();
}
}

Binary file not shown.

View file

@ -5,50 +5,65 @@ enum MIDIThruMode { OFF,
ON,
POLYCHAIN };
enum BiOutputMode {
PITCH_UNI,
PITCH_BI,
SAWTOOTH,
SQUARE,
SINE,
TRIANGLE
enum BiOutputType {
BI_OFF = 0,
BI_PITCH_UNI,
BI_PITCH_BI,
BI_SAWTOOTH,
BI_SQUARE,
BI_SINE,
BI_TRIANGLE
};
enum UniOutputMode {
PITCH,
VELOCITY,
AFTERTOUCH
enum UniOutputType {
UNI_OFF = 0,
UNI_PITCH,
UNI_VELOCITY,
UNI_MODULATION,
UNI_AFTERTOUCH,
UNI_BREATH,
UNI_EXP,
UNI_GATE
};
enum GateOutputMode {
GATE,
TRIGGER
enum GateOutputType {
GATE_OFF = 0,
GATE_GATE,
GATE_TRIGGER
};
class Part {
public:
Part()
: voice_count(1)
: poly_voice_count(1)
, output_column_count(1)
, midi_filter_channel_enabled(true)
, midi_filter_channel(1)
, midi_filter_lowest_note(0)
, midi_filter_highest_note(127)
, midi_thru_mode(OFF)
, output_mode_0(PITCH_UNI)
, output_mode_1(VELOCITY)
, output_mode_2(AFTERTOUCH)
, output_mode_3(GATE)
{
for (int i = 0; i < 4; i++) {
output_type_row_0[i] = BI_OFF;
output_type_row_1[i] = UNI_OFF;
output_type_row_2[i] = UNI_OFF;
output_type_row_3[i] = GATE_OFF;
}
}
void ProcessMidiInput(/* TODO: Inputs */);
private:
uint8_t voice_count;
uint8_t poly_voice_count;
uint8_t output_column_count;
bool midi_filter_channel_enabled;
uint8_t midi_filter_channel;
uint8_t midi_filter_lowest_note;
uint8_t midi_filter_highest_note;
MIDIThruMode midi_thru_mode;
BiOutputMode output_mode_0;
UniOutputMode output_mode_1;
UniOutputMode output_mode_2;
GateOutputMode output_mode_3;
BiOutputType output_type_row_0[4];
UniOutputType output_type_row_1[4];
UniOutputType output_type_row_2[4];
GateOutputType output_type_row_3[4];
};
#endif